GridWorks RD&D Planning Workshop

"Perspective on Cost and Performance of Existing Products"

10/20/04
Vince Kruse
Southwire

Perspective on Costs and Performance of Existing Products

- Today's Transmission System Requires More Capacity and Flexibility
- Right-of-Way is Difficult to Obtain
- Transmission Investment Incentives are Minimal
- Optimum is to Cost Effectively Modify Existing Infrastructure
- Most Transmission in U.S. is Overhead
- Transmission Limits: Voltage, Stability, Thermal
- Focus on Thermal Limitations Sag

Business Drivers For Overhead Transmission

- Safety
- Reliability
- Longevity
- Cost

Existing Overhead TransmissionProducts

(Based on Data Available to the Author)

- Products:
- ACSR (not Trapwire)
- ACSS
- Alumina Composite
 Core
- Polymer Carbon Fiber Composite Core

- Criteria:
- Rated Ampacity
- Max Operating Temp.
- Sag
- Al Conductivity
- Tensioning
- Long Term Creep
- Cost (Est.)

Aluminum Conductor Steel Reinforced (ACSR)

"The Most Common Conductor"

- Criteria:
- Rated Ampacity
- Max Operating Temp.
 75 Degrees C
- Sag
- Al Conductivity
- Tensioning
- Long Term Creep
- Cost (Est.)

- Data:
- 905 Amps [1x ACSR]
- 0.125 ft/°C
- 61.2% IACS
- Same as ACSR
- Stable, Predictable
- 1xACSR

Aluminum Conductor Steel Supported (ACSS)

- Criteria:
- Rated Ampacity
- Max Operating Temp.
- Sag
- Al Conductivity
- Tensioning
- Long Term Creep
- Cost (Est.)

- Data:
- 1827 Amps [2x ACSR]
- 250 Degrees C
- 0.125 ft/°C
- 63% IACS
- Same as ACSR (or Less)
- Stable, Predictable
- Approx. 1.2xACSR

Aluminum Conductor Alumina Composite Core

- Criteria:
- Rated Ampacity
- Max Operating Temp.
- Sag
- Al Conductivity
- Tensioning
- Long Term Creep

- Data:
- 1997 Amps [2.2x ACSR]
- 240 Degrees C
- 0.04 ft/°C
- 60% IACS
- Same as ACSR
- Stable, Predictable

Polymer Carbon Fiber Composite Core

- Criteria:
- Rated Ampacity
- Max Operating Temp.
- Sag
- Al Conductivity
- Tensioning
- Long Term Creep
- Cost (Est.)

- Data:
- 1903 Amps [2.1x ACSR]
- 200 Degrees C
- < 0.04 ft/°C (Est.)
- 63% IACS
- Same as ACSR
- Unknown, (Unpredictable)
- Approx. 5xACSR

Conclusion

- Increase Capacity of Current Infrastructure
- Research Cost-Effective, High Temperature, Low Sag Overhead Conductors